Energy Security ESPC at JBSA

- Energy Efficiency
- Onsite Generation
- Storage
- Microgrid Controls
JBSA ESPC Background

- Awarded in September 2018, $133.5M
- Project Development – ECMs:
 - 150,000 new LED luminaries with exterior lighting control and centralized monitoring
 - ~15 MW of Solar PV
 - Over 2,000,000 gallons of thermal energy storage for load shifting
 - DDC controls upgrades and advanced sequencing in over 285 buildings
 - 4 MW / 8 MWh Battery Energy Storage with 4 MW of gas fired generation for critical load support
 - 585 kW of Combined Heat and Power (CHP) at Critical Loads
Microgrid Benefits

- Leverage the ESPC contract vehicle to provide comprehensive mission support with enhanced resiliency and energy security measures
 - Provide reliable, resilient power to critical facilities and backup power to nearly half of the base loads
 - Distributed Generation assets operating in conjunction with a microgrid for indefinite mission support in the event of a LoU
 - Island from commercial power grid during periods of interruption
 - Increase use of renewable energy (EPACT 05; EISA ‘07) with battery and generation backup capabilities
Distributed Generation Architecture

- A dedicated network facilities seamless transition to critical facility loads during a LoU via a dedicated controls network

- Solar PV
- Battery Energy Storage (BESS)
- 4MW-8MWH Lithium Ion
- (2) 2MW Gas reciprocating engine generators
- Resulting in resilient and seamless transition during a critical event – that can maintain operation of critical load indefinitely
Power Flow Study

- Load Flow Study:
 - Current configuration - validated cable sizing, breaker sizing, switchgear ratings
 - Proposed configuration – validated DG insertion points capable of accommodating new equipment (Normal, Islanding)

- Short Circuit Analysis:
 - Current & proposed configurations – evaluated short circuit ratings of equipment

- Coordination Study:
 - Current configuration – validation of protection scheme
 - Current Issues – 15 mis-coordinated fuses, for immediate corrective action

- Transient Analysis:
 - Evaluated DG interaction/behavior with MV system
 - Islanding & fast load shed sequencing
 - Key outcome – development of criteria for inverters of BESS & PV
 - BESS and NG Generation are essential for stability
Microgrid Coverage
Operational Intent of the MCS

- Normal Mode
 - MCS to monitor loads
 - DG to reduce peak loads
 - Future: Demand Response from Utility (Natural Gas Generators)

- Islanding Mode
 - MCS to determine Loss of Utility and takes system control and fast load shed
 - BESS to provide ride through power – No blackstart
 - BESS to provide stability and frequency control
 - PV to provide power during peak periods
 - Natural Gas Generators to provide baseload capacity and additional stability
 - MCS to monitor loads and additional load shed to match load to generation
Summary

- Energy resiliency microgrids can be delivered through 3rd party financed projects
- State of the art technologies (MCS, PV, BESS, Microturbines) are driving down costs and increasing performance
- On-base, distributed generation can be incrementally matched to critical facility loads and island from the grid during outages
- DG peak shaving capability can save significant utility dollars
- Up-front planning will optimize execution costs and performance
- DoD, USAF energy resiliency project scoring may provide more resources
- **Microgrids = Resiliency = Mission Assurance!**